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Abstract

Recently, the speed of order matching systems on financial exchanges increased due to
competition between markets and due to large investor demands. There is an opinion that
this increase is good for liquidity by increasing providing liquidity of market maker strategies
(MM), on the other hand, there is also the opposite opinion that this speed causes socially
wasteful arms race for speed and these costs are passed to other investors as execution costs.

A frequent batch auction (FBA) which reduces the value of speed advantages proposed,
however, is also criticized that MM providing liquidity are exposed to more risks, and then
they can continue to provide liquidity, then many MM retire, and finally liquidity will be
reduced.

In this study we implemented a price mechanism that is changeable between a comparable
continuance double auction (CDA) and FBA continuously, and analyzing profits/losses and
risks of MM, we investigated whether MM can continue to provide liquidity even on FBA by
using an artificial market model.

Our simulation results showed that on FBA execution rates of MM becomes smaller and this
causes to reduce liquidity supply by MM. They also suggested that on FBA MM cannot avoid
both an overnight risk and a price variation risk intraday, furthermore, it is very difficult that
MM is rewarded for risks and continues to provide liquidity. Only on CDA MM is rewarded
for risks and continue to provide liquidity.

This suggestion implies that MM that can provide liquidity on CDA cannot continue to
provide liquidity on FBA and then many MM retire, finally liquidity will be reduced.

∗ Note that the opinions contained herein are solely those of the authors and do not necessarily reflect those of
Japan Exchange Group, Inc., its subsidiaries, affiliates, and SPARX Asset Management Co., Ltd. This research
was partially supported by CREST, JST and JSPS KAKENHI Grant Number 15H02745. Contact: Takanobu Mizuta
(mizutata@gmail.com)
† SPARX Asset Management Co., Ltd.
‡ The University of Tokyo
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1 Introduction

From 2000’s to early 2010’s, the speed of order matching systems on financial exchanges in-

creased due to competition between markets and due to large investor demands. There is an

opinion that this increase is good for liquidity by increasing providing liquidity of market maker

strategies (MM) who earn profits from an order spread they made both sell and buy waiting

orders(Angel et al. (2015); Otsuka (2014)). On the other hand, there is also the opposite opinion

that this speed causes socially wasteful arms race for speed and these costs are passed to other

investors as execution costs(Farmer and Skouras (2012); Budish et al. (2015)).

Budish et al. (2015) proposed a frequent batch auction (FBA) which reduces the value of speed

advantages to terminate the socially wasteful arms race for speed. Many financial exchanges

adopt a continuance double auction (CDA) in which multiple buyers and sellers compete to buy

and sell some financial assets and where transactions can occur at any time whenever an offer

to buy and an offer to sell match. On the other hand, on FBA buy and sell orders are grouped

together and then executed every specific time intervals, for example some minutes, rather than

executed one by one continuously. Budish et al. (2015) argued that these intervals leads to reduce

the value of speed advantages and terminates the socially wasteful arms race for speed.

Budish et al. (2015) also analyzed using a simple model and empirical data, and argued that

on CDA at high-frequency time horizons return correlations completely break down which leads

to obvious mechanical arbitrage opportunities, on the other hand, on FBA the opportunities will

be reduced. Fricke and Gerig (2015) discussed an optimal batch auction interval to minimize

volatilities (standard deviations of returns) using a simple model. Manahov (2016) also discussed

an optimal batch auction interval to prevent latency arbitrages calculating a time scale of latency

arbitrages by empirical study using a simple model.

On the other hand, FBA is also criticized. Otsuka (2014) argued that on FBA market maker

strategies (MM) providing liquidity are exposed to more risk because estimation of executed

prices is more difficult, and then MM cannot continue to provide liquidity, therefore, liquidity

will be reduced. This will leads to increase execution costs of other investors by bid ask spread

becoming wider and will leads to reduce trading opportunities*1.

Indeed, the models of Budish et al. (2015); Fricke and Gerig (2015) did not treat profits/loses

of MM providing liquidity and so the models cannot discuss about possibility that MM cannot

continue provide liquidity suggested by Otsuka (2014).

Bellia et al. (2015) studied empirically the possibility that MM cannot continue provide liquidity.

As useful references but not exactly same as FBA, Bellia et al. (2015) compared data of batch

*1 Otsuka (2014) also argued that FBA will cause more serious arms race for speed because many orders will rushed
within immediately before interval auctions.
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auctions at opening and ending markets with that of CDA in the Tokyo stock exchange, and

showed that MM made more orders on CDA than on batch auctions. This study implied that it

is very important for MM that orders are immediately executed, FBA will lead to reduce traders

who provides liquidity.

Empirical studies cannot be conducted to investigate situations that have never occurred in

actual financial markets, changing from CDA to FBA. And ,so many factors cause price formation

and liquidity in actual markets, an empirical study cannot be conducted to isolate the direct effect

of latency to price formation.

Artificial market simulation*2 using a kind of agent based model can isolate the pure contribution

of the changes to the price formation and can treat the changes that have never been employed.

These are strong points of artificial market simulation studies.

Not only academies but also financial regulators and stock exchanges are recently interested

in multi-agent simulations such artificial market models to investigate regulations and rules of

financial markets. Indeed, the Science article, Battiston et al. (2016) described that ‘since the 2008

crisis, there has been increasing interest in using ideas from complexity theory (using network

models, multi-agent models, and so on) to make sense of economic and financial markets’.

Recently, many artificial market studies contributed to discussion what financial regulations

and rules should be. For example, price variation limits and short selling regulation whether

preventing bubbles and crushes or not (Yagi et al. (2010); Yeh and Yang (2010); Mizuta et al. (2013,

2016a); Zhang et al. (2016)), transaction taxes (Westerhoff (2008)), financial leverages (Thurner

et al. (2012); Veld (2016)), circuit breakers (Kobayashi and Hashimoto (2011)), usage rate of dark

pools(Mo and Yang (2013); Mizuta et al. (2015)), cancel order tax (Veryzhenko et al. (2016)) and

the effects of different regulatory policies directed towards high frequency traders (HFTs) (Leal

and Napoletano (2016))*3.

In the JPX Working Paper series, there are some studies contributed to discussion what financial

regulations and rules should be. Mizuta et al. (2013) investigated effects of changing tick sizes,

Kusada et al. (2014, 2015) investigated effects of market maker strategies and Mizuta et al. (2015,

2016b) investigated effects of increasing speed of order matching systems on financial exchanges.

However, it has not been investigated by artificial market simulations whether MM can continue

to provide liquidity even on FBA.

*2 There are many excellent reviews(LeBaron (2006); Chen et al. (2012); Cristelli (2014); Mizuta (2016)). And we explain
the basic concept for constructing our artificial market model in the Appendix “Basic Concept for Constructing
Model”

*3 Of course, many artificial market simulation studies investigated the nature of financial markets, for examples,
market impacts (Cui and Brabazon (2012); Oesch (2014)), financial market crush (Yagi et al. (2012); Paddrik et al.
(2012); Mizuta et al. (2013); Torii et al. (2015); Schmitt and Westerhoff (2016)), interaction between option markets
and underlying markets (Kawakubo et al. (2014a,b)), effects of passive funds (Braun-Munzinger et al. (2016)), and
effects of HFTs (Gsell (2009); Wang et al. (2013); Xiong et al. (2015); Hanson and Hanson (2016)). Kita et al. (2016)
reviewed the U-Mart project which is one of Japanese top artificial market research projects in the 2000s.
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Therefore, in this study we implemented a price mechanism that is changeable between CDA

(δt = 1) and FBA (δt > 1) continuously introducing a new parameter, a batch auction interval δt,

based on the model of Kusada et al. (2014, 2015). And then, we analyzed profits/losses and risks

of MM and investigated whether MM can continue to provide liquidity even on FBA by using an

artificial market model.

2 Artificial Market Model

Chiarella and Iori (2002) is very simple but replicates long-term statistical characteristics ob-

served in actual financial markets: fat-tail and volatility clustering. Mizuta et al. (2013) replicates

high-frequency micro structures, such as execution rates, cancel rates, and one-tick volatility,

which cannot be replicated with Chiarella and Iori (2002). Kusada et al. (2014, 2015) implemented

market maker strategy agent (MM) based on the model of Mizuta et al. (2013).

In this study we implemented a price mechanism that is changeable between a comparable con-

tinuance double auction (CDA, δt = 1) and a frequent batch auction (FBA, δt > 1) continuously

introducing a new parameter, a batch auction interval δt, based on the model of Kusada et al.

(2014, 2015). The simplicity of the model is very important for this study because an unneces-

sary replication of macro phenomena leads to models that are over-fitted and too complex and

such models would prevent our understanding and discovering mechanisms affecting the price

formation because of related factors increasing. We explain the basic concept for constructing our

artificial market model in the Appendix “Basic Concept for Constructing Model”.

2.1 Price Mechanism

In this study we implemented a price mechanism that is changeable between CDA (δt = 1)

and FBA(δt > 1) continuously. CDA is an auction mechanism in which multiple buyers and

sellers compete to buy and sell some financial assets and where transactions can occur at any time

whenever an offer to buy and an offer to sell match. On FBA, traders can make orders anytime

but the orders are not executed for a batch auction interval δt. After the interval, buy orders in

descending order of price and sell orders in ascending order of price are matched in turn and

executed. We call this process a batch auction.

In our model t passes every normal agent (NA) ordered even if no deals have occurred. The

batch auction interval is defined as δt, and we constructed the price mechanism model that is

exactly same as CDA when δt = 1. When a batch auction is done at t, a market price (traded

price) Pt is determined as the mid-price (the average price between the highest buy and lowest

sell orders) among remained orders after the batch auction. And also when a batch auction is not

done at t, Pt is determined as a tentative market price that the market price if a batch auction were

done at t. This definition allows Pt is calculated continuously for any t.
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New Order -> Sell 99 Buy 100 Buy 101 Sell 98 

time t=0 t=1 t=2 t=3 t=4 

Sell Price Buy Sell Price Buy Sell Price Buy Sell Price Buy Sell Price Buy 

CDA 1 101 1 101 1 101 1 101 1 101 

δt=1 1 100 1 100 1 100 1 100 100 

99 1 1 99 1 99 99 99 

98 1 98 1 98 1 98 1 1 98 1 

Immediately 

Executed 

Immediately 

Executed 

Immediately 

Executed 

Immediately 

Executed 

Sell Price Buy Sell Price Buy Sell Price Buy Sell Price Buy Sell Price Buy 

1 101 1 101 1 101 1 101 1 1 101 1 

FBA 1 100 1 100 1 100 1 1 100 1 1 100 1 

δt=4 99 1 1 99 1 1 99 1 1 99 1 1 99 1 

98 1 98 1 98 1 98 1 1 98 1 

Not 

Executed 

Not 

Executed 

Not 

Executed 

Executed at 

specific time 

Figure 1 Example for price mechanism

Figure 1 shows an example for price mechanism. The top shows the case of δt = 1 (CDA) and

the bottom shows the case of δt = 4 (FBA). From the left side to right at t = 0, 1, 2, 3, 4 order books

are showed. t = 0 is immediately after a batch auction and remained orders are same for both

cases. Here, at t = 1 a new sell order at a price 99 is made. In the case of δt = 1, the new sell order is

matched to the same price as buy order immediately and both orders are banished. On the other

hand, the case of δt = 4, the new sell order remains because of t = 1 is not a batch auction time. In

the same way, new buy orders at prices 100 and 101 are made at t = 2, 3, respectively, in the case

of δt = 1 both orders are executed, on the other hand, in the case of δt = 4 both orders remains. At

t = 4, a new sell order at the price 98 is made, in the case of δt = 1 the order is executed as the same

way. In the case of δt = 4, remember t = 4 is a batch auction time, buy orders in descending order

of price and sell orders in ascending order of price are matched in turn. As a result, buy order of

a price 101 and sell 100, and buy 100 and sell 99 are matched, respectively. A market price Pt is

determined as the mid-price 99.5.

Note that remaining orders are very different between the case of δt = 1 and that of δt = 4. In

the case of δt = 1, no orders remain, on the other hand, in the case of δt = 4, four orders remain.

Furthermore, in the case of δt = 1, 4 buy orders are executed in all, on the other hand in the case

of δt = 4, only 2 buy orders are executed in all. In this way, price formations and order books

depend on δt.
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2.2 Agent

Our model treats only one risk asset. The numbers of normal agents (NA) and market maker

agents (MM) are n and 1, respectively. First, at time t = 1, NA no. 1 orders to buy or sell the risk

asset; then at t = 2, 3, , , n, NA no. 2, 3, , , n respectively order to buy or sell. MM makes two orders,

buy and sell immediately before NA ordering. As shown in Figure 2, MM orders every time step

by next batch auction and immediately after the batch auction all MM’s orders are canceled. At

t = n + 1, going back to the first NA, NA 1 orders to buy or sell, and at t = n + 2,n + 3, , n + n, NA

no. 2, 3, , , , n respectively order to buy or sell, and this cycle is repeated. Note that t passes every

NA ordered even if no deals have occurred.

Agents always order only one share. The quantity of holding positions is not limited, so agents

can take any shares for long and short positions to infinity. The minimum unit of price change is

δP. The buy order price is rounded off to the nearest fraction, and the sell order price is rounded

up to the nearest fraction.

2.2.1 Normal Agent (NA)

To replicate nature of price formations in actual financial markets we introduced a normal

agent (NA), and we modeled NA as very general investors and as simple as replicating long-term

statistical characteristics and very short term micro structure in real financial markets.

NA determines an order price and buys or sells as follows. NA uses a combination of a

fundamental value and technical rules to form expectations on a risk asset’s returns. An expected

return of agent j is

rt
e, j =

1
w1, j + w2, j + u j

(
w1, j log

P f

Pt + w2, jrt
h, j + u jϵ

t
j

)
, (1)

where wi, j is the weight of term i of agent j and is independently determined by random variables

uniformly distributed in the interval (0,wi,max) at the start of the simulation for each agent, u j is

the weight of the third term of agent j and is also independently determined by random variables

uniformly distributed in (0,umax) at the start of the simulation for each agent, P f is a fundamental

value that is constant*4, Pt is a market price (a tentative market price) defined on the previous

section, ϵtj is noise determined by random variables of normal distribution with an average 0 and a

variance σϵ, rt
h, j is a historical price return inside an agent’s time interval τ j, and rt

h, j = log (Pt/Pt−τ j ),

and τ j is independently determined by random variables uniformly distributed in the interval

(1, τmax) at the start of the simulation for each agent*5.

The first term of Eq. (1) represents a fundamental strategy: an agent expects a positive return

when the market price is lower than the fundamental value, and vice versa. The second term of

*4 We focused phenomena in time scale as short as the fundamental price remains static.
*5 However, when t < τ j, rt

h, j = 0.
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Sell Price Buy 

10011 

1 10010 

10009 

10008 

10007 

10006 

10005 

10004    

10003 

10002 1 

10001 

10000 

Sell Price Buy 

1 10011 

1 10010 

10009 

10008 

10007 

10006 

10005 

10004 

10003 1 

10002 1 

10001 

10000 

Order both Sell and Buy at once Order every time by a batch auction 

← Pfair ← Pfair 

← Pspread 

Pspread → 

Figure 2 Orders of the market maker agent (MM)

Eq. (1) represents a technical strategy: an agent expects a positive return when historical market

return is positive, and vice versa.

After the expected return has been determined, the expected price is

Pt
e, j = Pt exp (rt

e, j). (2)

An order price Pt
o, j is determined by random variables normally distributed in an average Pt

e, j

and a standard deviation Pσ, where Pσ is a constant.

Buy or sell is determined by the magnitude relationship between Pt
e, j and Pt

o, j, i.e.,

when Pt
e, j > Pt

o, j, the agent orders to buy one share,

when Pt
e, j < Pt

o, j, the agent orders to sell one share*6.

2.2.2 Market Maker Agent (MM)

In this study, we constructed a model of a Market Maker Agent (MM) based on the models

of Kusada et al. (2014, 2015). As Figure 2 shows, MM makes one sell order in the price higher

by an order spread Pspread than a fair value P f air, in short P f air + Pspread, and makes one buy order

in the price P f air − Pspread. MM makes these orders immediately before NA ordering, and orders

every time step by next batch auction. This leads that amount of orders of MM is constant and is

independent on δt. Immediately after the batch auction all MM’s orders are canceled.

We implemented four kinds of MM. First one is a simple MM (SMM) with P f air = Pt. Second

one is a position MM (PMM) with
P f air = (1 − kS3)Pt, (3)

*6 However, during t < tc, due to make enough waiting orders, when P f > Pt
o, j, the agent orders to buy one share,

when P f < Pt
o, j, the agent orders to sell one share.
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Time Step 

End of 

day 
Making 

Position Zero 

End of 

day 

End of 

day 

Δ𝑇 Δ𝑇 Δ𝑇 

Δ𝑇𝑒𝑛𝑑 Δ𝑇𝑒𝑛𝑑 Δ𝑇𝑒𝑛𝑑 

Figure 3 Periods that MM is closing its position

Do not order increasing position 

Sell Price Buy 
1 10011 

10010 

10009 
10008 

10007 1 

In the case of negative position, 

within last 2,000 time steps 

Do not order↑ 

Sell Price Buy 
10011 1 
10010 

10009 
10008 

10007 

←change order price here 

PMM4 PMM3 

← Pfair ← Pfair 

In the case of negative position, 

within last 2,000 time steps 

Change order price that of opposite side (buy/sell) 

Figure 4 Orders of PMM3 and PMM4 on the position closing period

where k is a constant, S is a holding position of MM. In the case of S > 0, P f air is smaller than Pt,

then order prices for both buy and sell are lower. Therefore, it will be more difficult for buy orders

to be executed and easier for sell orders, and then the absolute of S (∥S∥) has tendency to decrease.

On the other hand in the case of S < 0, P f air is higher than Pt, then order prices for both buy and

sell are higher. Therefore, it will be easier for buy orders to be executed and more difficult for sell

orders, and then ∥S∥ has tendency to decrease. In both case, ∥S∥ of PMM is smaller than that of

SMM, so PMM reduce profit/loss risks.

Actual MMs also make effort to reduce their position to avoid profit/loss risks. Especially, they

usually close all position at the end of a day because if there are big head lines on overnight (from

the end of a day to the start of next day), they could lead to take large loss. Therefore, we added

more two kinds of MMs that try to avoid such the overnight risk unconsidered in Kusada et al.

(2014, 2015).

Figure 3 shows periods that MM is closing its position and a definition of the length of one

day. We defined the length of one day as ∆T, and constructed two more kind of MM, PMM3 and

PMM4 which make effort to reduce their positions on the last period ∆Tend in one day (position

closing period) to hold no overnight position. The left side on Figure 4 shows orders of PMM3

on the position closing periods. On the periods, PMM3 make no buy order when S > 0 and no
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sell order when S < 0. The right side on Figure 4 shows orders of PMM4 on the position closing

periods. On the periods, PMM4 make a buy order in the price P f air − Pspread that is normally sell

order price when S > 0 and a sell order in the price P f air + Pspread that is normally buy order price

when S < 0.

PMM4 makes orders in the more aggressive prices than PMM3 to reduce its position. Such

orders of PMM4 match waiting orders of NA, and this means taking liquidity providing by NA.

And then, when ∥S∥ is large, PMM4 disturbs market prices to one direction and a price variation

risk of PMM4 is higher. Therefore, in actual market, PMM3 is more actual than PMM4, however,

when δt is large PMM3 cannot make its overnight position zero as showed on the next section.

For this reason, we constructed PMM4.

3 Simulation Result

In this study, we set the same parameters as those of Mizuta et al. (2013) and Kusada et al.

(2014, 2015). Specifically, we set*7 n = 1, 000,w1,max = 1,w2,max = 10,umax = 1, τmax = 10, 000, σϵ =

0.06,Pσ = 30, tc = 20, 000, δP = 0.02,P f = 10, 000, k = 0.00000005,∆T = 20, 000,∆Tend = 2, 000. And

we ran simulations at t = te = 10, 000, 000.

And we ran simulations for four kinds of MM, Pspread/P f =0.03%, 0.1%, 0.3%, 1%, and δt =1, 2,

5, 10, 20, 50, 100, 200, 500, 1000*8, not only under other parameters that were fixed but also the

same random number table. We simulated these runs 100 times, changing the random number

table each time, and used averaged statistical values of 100 runs.

3.1 Order Spread (Pspread/P f ) and Execution Ratio

Table 1 shows execution rates of MM (PMM4) for various batch auction intervals (δt) and order

spreads of MM (Pspread/P f ). An execution rate is defined as number of executed orders per number

of all orders.

δt is larger, execution rates of MM is smaller. These decreasing execution rates cause to reduce

liquidity supply by MM, because MM provides liquidity (opportunities of trades) to NA always

making both sell and buy waiting orders. Therefore, δt is smaller, liquidity is more provided. This

implies that MM can provide liquidity most on CDA.

Pspread/P f is larger, of course, execution rates of MM is smaller. When Pspread/P f = 0.1%, at

δt = 1 the execution rates are realistic, however, at δt ≥ 50 the execution rates are little and it is

impossible to analyze holding position of MM, profit/loss risks and so on. Therefore, we used

Pspread/P f = 0.03% following sections to enable meaningful analysis even though δt ≥ 50.

*7 We explain how they verified their model in the Appendix “Verification of the Model”.
*8 In short, we simulated 160(= 4 × 4 × 10) cases by 4 kinds of MM, 4 cases of Pspread and 10 cases δt.
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Table 1 Execution rates of MM (PMM4) for various batch auction intervals (δt) and order
spreads of MM (Pspread/P f )

Execution Rate of MM
Pspread/P f

0.03% 0.10% 0.30% 1.00%

δt

1(CDA) 8.06% 1.53% 0.00% 0.00%

2 6.30% 0.88% 0.00% 0.00%

5 3.93% 0.37% 0.00% 0.00%

10 2.47% 0.14% 0.00% 0.00%

20 1.49% 0.02% 0.00% 0.00%

50 0.77% 0.00% 0.00% 0.00%

100 0.48% 0.00% 0.00% 0.00%

200 0.32% 0.00% 0.00% 0.00%

500 0.21% 0.00% 0.00% 0.00%

1000 0.22% 0.00% 0.00% 0.00%

Table 2 Averages of ∥S∥within whole period or end periods on a day for various batch auction
intervals (δt) and kinds of MM. (Pspread/P f = 0.03%)

SMM PMM PMM3 PMM4

Average End End End End

of ∥S∥ Whole Period Whole Period Whole Period Whole Period

Period on a day Period on a day Period on a day Period on a day

δt

1(CDA) 12,357 12,371 3.18 3.08 2.90 0.00 2.89 0.00

2 17,42 17,441 3.10 3.25 2.79 0.00 2.79 0.00

5 4,409 4,414 3.87 3.95 3.48 0.00 3.48 0.00

10 1,744 1,744 4.44 4.34 4.01 0.02 3.96 0.00

20 548 548 4.84 4.71 4.52 0.78 4.35 0.00

50 384 385 5.27 5.14 5.02 2.63 4.63 0.00

100 369 370 5.57 5.51 5.56 4.26 4.80 0.00

200 174 174 5.91 6.11 5.92 5.69 4.38 0.00

500 72 71 5.75 6.06 5.70 5.81 2.32 0.03

1000 290 290 5.94 6.11 5.61 5.80 1.76 0.06

3.2 Position for various kinds of MM

Table 2 shows averages of ∥S∥ within whole period or end periods on a day for various δt and

kinds of MM at Pspread/P f = 0.03%.
10



Table 3 Final profits of MM, averages of ∥S∥ and execution rates of MM and NA for various
batch auction intervals (δt).(PMM4, Pspread/P f = 0.03%)

Average of ∥S∥
Final Profit End

of MM /P f Whole Period Execution Execution

Period on a day Rate of MM Rate of NA

δt

1(CDA) 51.98 2.89 0.00 8.06% 39.1%

2 -29.42 2.79 0.00 6.30% 39.1%

5 -14.90 3.48 0.00 3.93% 37.6%

10 -4.08 3.96 0.00 2.47% 36.3%

20 1.51 4.35 0.00 1.49% 34.9%

50 3.68 4.63 0.00 0.77% 33.4%

100 2.53 4.80 0.00 0.48% 32.5%

200 0.93 4.38 0.00 0.32% 31.8%

500 -0.06 2.32 0.03 0.21% 31.0%

1000 -0.10 1.76 0.06 0.22% 30.5%

Actual MMs also make effort to reduce their position to avoid profit/loss risks. Especially, they

usually close all position at the end of a day because if there are big head lines on overnight (from

the end of a day to the start of next day), they could lead to take large loss.

Therefore, it is unrealistic that the case of large averages of ∥S∥ within end periods on a day

because of high loss risks of MM. SMM and PMM which are not implemented to make effort to

close all position at the end of a day, of course, have unrealistic large ∥S∥.
When δt ≤ 10, ∥S∥ of PMM3 within end periods on a day are almost zero, and so PMM3 can

prevent overnight risks. On the other hand, when δt ≥ 20 PMM3 cannot make ∥S∥ = 0, and PMM3

is exposed unrealistic high risk on overnights. Furthermore, as we mentioned previous section,

δt is larger, execution rates are smaller, none the less ∥S∥within whole period is larger and PMM3

takes more loss risks. In short, when δt ≥ 20 PMM3 cannot avoid both an overnight risk and a

price variation risk intraday, this suggests that PMM3 cannot continue to provide liquidity.

Only PMM4 which makes orders in the more aggressive prices to reduce its position within end

periods on a day can make its position almost zero even when δt ≥ 20. Such orders of PMM4

match waiting orders of NA, and this means taking liquidity providing by NA. And then, when

∥S∥ is large, PMM4 disturbs market prices to one direction and a price variation risk of PMM4

is higher. However, otherwise MM cannot prevent overnight risks when δt ≥ 20. This implies

that when δt is large (FBA), MM should take another risks to avoid overnight risks and cannot

continue to provide liquidity. However, we used PMM4 following section because only PMM4
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avoid overnight risks.

3.3 Final Profit

Table 3 shows final (t = te) profits of MM (PMM4), averages of ∥S∥ and execution rates of MM

and NA for various δt at Pspread/P f = 0.03%.

When δt = 2, 5, 10, profits of MM are negative and MM lost money. In this study, we treat a

very steady market in that MM earns profit easily. None the less losing money means it is very

difficult for MM to earn profits in actual market. When δt = 20, 50, 100, 200, MM cannot also earn

enough, the profits are much smaller than that when δt = 1(CDA). As we mentioned previously

δt is larger, price variation risks of MM are higher. Considering these factors, when δt > 1 (FBA)

it is very difficult that MM is rewarded for risks and continue to provide liquidity.

4 Summary and Future Works

In this study we implemented a price mechanism that is changeable between a comparable

continuance double auction (CDA, δt = 1) and a frequent batch auction (FBA, δt > 1) continuously

introducing a new parameter, a batch auction interval δt, based on the model of Kusada et al.

(2014, 2015). And then, we analyzed profits/losses and risks of market maker strategies (MM) and

investigated whether MM can continue to provide liquidity even on FBA by using an artificial

market model.

Our simulation results showed that δt is larger, execution rates of MM is smaller and this causes

to reduce liquidity supply by MM. Furthermore, they suggested that when δt is larger (FBA), MM

cannot avoid both an overnight risk and a price variation risk intraday. Furthermore, they also

suggested that when δt > 1 (FBA) it is very difficult that MM is rewarded for risks and continue

to provide liquidity. Only the case of δt = 1 (CDA) MM is rewarded for risks and continue to

provide liquidity.

These suggestions implies that MM that can provide liquidity on CDA cannot continue to

provide liquidity on FBA and then many MM retire, and finally liquidity will be reduced. This

implication is consistent with the argument by Otsuka (2014).

One of future work is a discussion for more suitable MM to FBA. In this study, we showed the

possibility MM adapting to CDA is not suitable to FBA. An existence of MM adapting to FBA

is unlikely, however, this study cannot outright deny the existence. Another future work is an

investigation the case of a few waiting orders or of no MM providing liquidity. In the case of a

few waiting orders on the order book, it is possible that investors can make order easier on FBA

than on CDA. The case of no MM is off table of this study.

For more detailed discussions, we should compare the simulation results to those from studies

using other methods, e.g., empirical studies and theoretical studies. An artificial market can
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isolate the direct effect of changes in market systems to price formation, and can treat situations

that have never occurred. However, outputs of artificial market simulations may not be accurate

or credible forecasts in actual markets. It is an important for artificial market simulations to

show possible mechanisms affecting price formation through many runs and gain new insight;

conversely, a limitation of artificial market simulations is that their outputs may, but not certainly,

occur in actual financial markets.

Appendix

4.1 Basic Concept for Constructing Model

An artificial market, which is a kind of agent based models, can isolate the pure contribution

of these system changes to the price formation and can treat the changes that have never been

employed (LeBaron (2006); Chen et al. (2012); Cristelli (2014); Mizuta (2016)). These are the strong

points of the artificial market simulation study.

However, outputs of the artificial market simulation study would not be accurate or credible

forecasts of the actual future. The artificial market simulation needs to show possible mechanisms

affecting the price formation by many simulation runs, e.g. searching for parameters, purely

comparing before/after the changing, and so on. The possible mechanisms shown by these

simulation runs will give us new intelligence and insight about effects of the changes to price

formation in actual financial markets. Other study methods, e.g. empirical studies, would not

show such possible mechanisms.

Indeed, artificial markets should replicate macro phenomena existing generally for any asset

and any time. Price variation, which is a kind of macro phenomena, is not explicitly modeled

in artificial markets. Only micro processes, agents (general investors), and price determination

mechanisms (financial exchanges) are explicitly modeled in artificial markets. Macro phenomena

are emerging as the outcome interactions of micro processes. Therefore, the simulation outputs

should replicate general macro phenomena at least to show that simulation models are probable

in actual markets.

However, it is not a primary purpose for the artificial market to replicate specific macro phenom-

ena only for a specific asset or a specific period. An unnecessary replication of macro phenomena

leads to models that are over-fitted and too complex. Such models would prevent our under-

standing and discovering mechanisms affecting the price formation because of related factors

increasing.

Indeed, artificial market models that are too complex are often criticized because they are

very difficult to evaluate (Chen et al. (2012)). A too complex model not only would prevent

our understanding mechanisms but also could output arbitrary results by over-fitting too many

parameters. Simpler models harder obtain arbitrary results, and are easier evaluated.
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Table 4 Statistics without MM on δt = 1(CDA)

execution rate 32.3%

trading cancel rate 26.1%

number of trades / 1 day 6467

standard for 1 tick 0.0512%

deviations for 1 day (20000 ticks) 0.562%

kurtosis 1.42

lag

1 0.225

autocorrelation 2 0.138

coefficient for 3 0.106

square return 4 0.087

5 0.075

Therefore, we constructed an artificial market model that is as simple as possible and do not

intentionally implement agents to cover all the investors who would exist in actual financial

markets.

4.2 Verification of the Model

In many previous artificial market studies, the models were verified to see whether they could

explain stylized facts such as a fat-tail, volatility-clustering, and so on (LeBaron (2006); Chen

et al. (2012); Cristelli (2014); Mizuta (2016)). A fat-tail means that the kurtosis of price returns is

positive. Volatility-clustering means that the square returns have positive autocorrelation, and

the autocorrelation slowly decays as its lag becomes longer. Many empirical studies, e.g. that

of Sewell (2011), have shown that both stylized facts (the fat-tail and volatility-clustering) exist

statistically in almost all financial markets. Conversely, they also have shown that only the fat-tail

and volatility-clustering are stably observed for any asset and in any period because financial

markets are generally unstable.

Indeed, the kurtosis of price returns and the autocorrelation of the square returns are stably

and significantly positive, but the magnitudes of these values are unstable and very different

depending on asset and/or period. The kurtosis of price returns and the autocorrelation of the

square returns were observed to have very broad magnitudes of about 1 ∼ 100 and about 0.01 ∼ 0.2,

respectively (Sewell (2011)).

For the above reasons, an artificial market model should replicate these values as significantly

positive and within a reasonable range as we mentioned. It is not essential for the models to

replicate specific values of stylized facts because these stylized facts’ values are unstable in actual
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financial markets.

Table 4 lists statistics in which there is no market maker strategy on δt = 1(a continuance double

auction). All statistics are averages of 100 simulation runs, and all the following figures use the

average of 100 simulation runs. We define 20, 000 time steps as 1 day because the number of

trades within 20, 000 time steps is almost the same as that in actual markets per day. All statistics;

execution rates, cancel rates*9, standard deviations of returns for one tick and one day*10, kurtosis

of price returns, and the autocorrelation coefficient for square returns*11 are of course almost the

same as the results of actual financial markets. These showed that this mode replicated very short

term micro structure, execution rates, cancel rates and standard deviations of returns for one tick,

and replicated long-term statistical characteristics, fat tail, and volatility clustering, observed in

real financial markets. Therefore, the model was verified to investigate whether market maker

strategies can continue to provide liquidity even on a frequent batch auction.

*9 The execution rate is the ratio of the number of trades to that of all orders. The cancel rate is the ratio of the number
of cancels to that of all orders + cancels.

*10 In our model, though overnight returns do not exist, the standard deviations of returns for one day correspond to
intraday volatility in real financial markets.

*11 We used returns for 10 time units’ intervals (corresponding to about 10 seconds) to calculate the statistical values
for the stylized facts. In this model, time passes by an agent just ordering even if no dealing is done. Therefore, the
returns for one tick (one time) include many zero returns, and they will bias statistical values. This is the reason we
use returns for about 10 time units’ intervals.
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